

Electrophysiological Brain Networks in Resting State MEG

Vincent Wens

Laboratoire de Cartographie Fonctionnelle Cérébrale ULB – Neuroscience Institute

FERB – UET meeting Milan May 2, 2013

I. Resting State Networks (RSN)

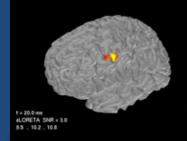
- The brain as an integrated system
- Resting state functional connectivity

• 2. MEG Resting State Networks

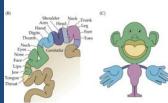
- Magnetoencephalography
- MEG rhythms functional connectivity
- Seed-based correlation maps
- Inter- and intra-subject variability of RSNs
- Independent Component Analysis

3. Last Considerations

- The dynamic brain network
- Further developments



RESTING STATE NETWORKS

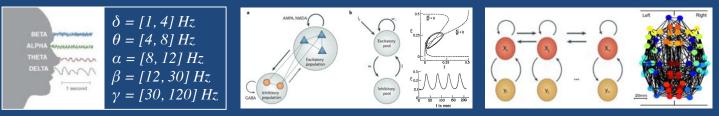

THE BRAIN AS AN INTEGRATED SYSTEM

Hôpital Erasme

- Neuroimaging : long focused on focal activity.
- Principle of functional specialization.
- But even focal macroscopic activity results from neural connectivity.

Focal response to basic somatosensori stimulus

Somatotopy of postcentral gyrus



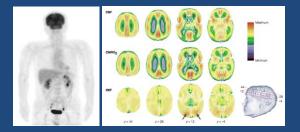
Local and global connectivity

Functional integration : brain = network.

THE BRAIN AS AN INTEGRATED SYSTEM

 Connectivity has consequences on seemingly focal properties.

Brain rhythms (left) = consequences of local (middle) and/or large-scale (right) connectivity.


 Modifications in connectivity may lead to both focal and global changes in brain activity!

E.g. Focal lesion in white matter can lead to large-scale changes in activity.

Why use a connectivity-based approach to study stroke and recovery of function? Alex R. Carter **, Gordon L. Shulman*, Maurizio Corbetta *. b.c

RESTING STATE FUNCTIONAL CONNECTIVITY

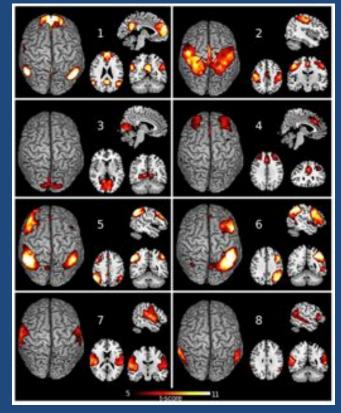
- Resting state : simple experimental paradigm.
- Brain at rest : metabolically and functionally active.



Spontaneous brain activity : [Gusnard et al. 2001]

not mere noise, but presents structures.

Occipital α -rhythm [Berger 1924–1929]



DMN [Raichle et al. 2001]

 Confirmation that DMN is a brain network : resting state functional connectivity.

RESTING STATE FUNCTIONAL CONNECTIVITY

- Functional connectivity = study of co-variation patterns between distant brain regions.
- Resting state fMRI functional connectivity : DMN + other networks!
- Ongoing BOLD activity : structured spatiotemporal patterns = RESTING STATE NETWORKS.

[Rosazza et al. 2011]

VOLUME 4 NOVEMBER 2003 1

- Main limitation of BOLD connectivity : its hemodynamic origin.
 - Limited in study neural dynamics of RSNs.
 - Dependent on neurovascular coupling.

ALTERATIONS IN THE BOLD FMRI SIGNAL WITH AGEING AND DISEASE: A CHALLENGE FOR NEUROIMAGING

Mark D'Esposito, Leon Deouell and Adam Gazzaley

 Electrophysiological origin of RSNs recently demonstrated using MEG!

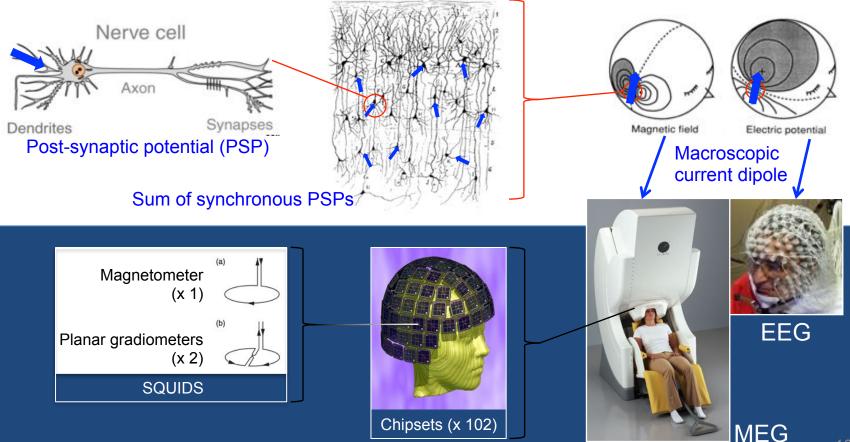
Temporal dynamics of spontaneous MEG activity in brain networks

Large-scale cortical correlation structure of spontaneous oscillatory activity

Francesco de Pasquale^{a,b,1}, Stefania Della Penna^{a,b}, Abraham Z. Snyder^{c,d}, Christopher Lewis^{a,b}, Dante Mantini^{a,b,2}, Laura Marzetti^{a,b}, Paolo Belardinelli^{a,b}, Luca Ciancetta^{a,b}, Vittorio Pizzella^{a,b}, Gian Luca Romani^{a,b}, and Maurizio Corbetta^{a,b,c,d}

Joerg F Hipp^{1,2}, David J Hawellek¹, Maurizio Corbetta³, Markus Siegel² & Andreas K Engel¹ VOLUME 15 | NUMBER 6 | JUNE 2012 NATURE NEUROSCIENCE

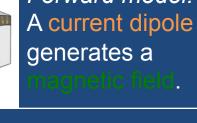
Investigating the electrophysiological basis of resting state networks using magnetoencephalography

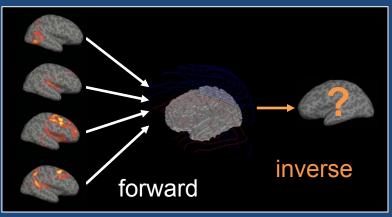

Matthew J. Brookes^{a,1}, Mark Woolrich^b, Henry Luckhoo^b, Darren Price^a, Joanne R. Hale^a, Mary C. Stephenson^a, Gareth R. Barnes^c, Stephen M. Smith^d, and Peter G. Morris^a

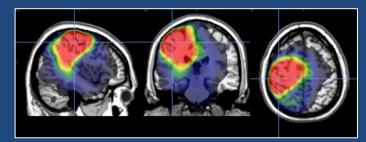
MEG RESTING STATE NETWORKS

MAGNETOENCEPHALOGRAPHY

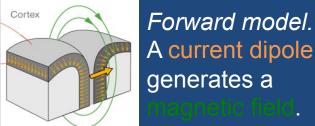
MEG : direct measure of electrophysiological activity of neural populations.

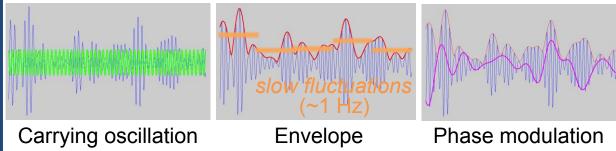

Höpital

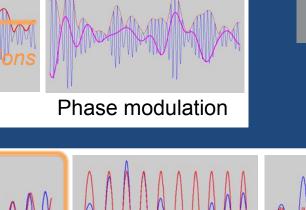

Erasme

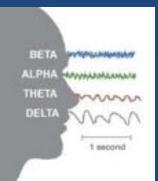

ULB

MAGNETOENCEPHALOGRAPHY


- Source reconstruction : Inverse problem from magnetic data to current dipoles.
- No unique inversion scheme.
- Here : L_2 Minimum Norm Estimate.
- Spatial smoothing from sensors to sources space : SIGNAL LEAKAGE.

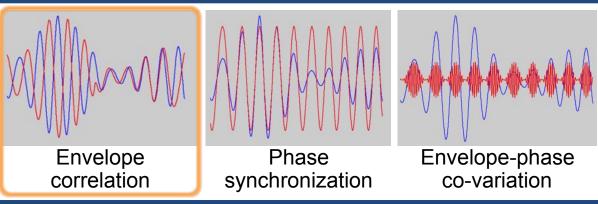

Source correlation with left SM1 $(\beta$ -band, MNE)





MEG RHYTHMS FUNCTIONAL CONNECTIVITY

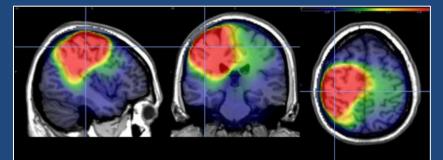
- Source-space MEG rhythms.
- Characteristics of a rhythm :



Erasme

Functional coupling between 2 rhythms :

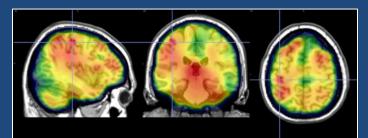
• 2 implementations :


Seed-based correlation maps

Temporal ICA


SEED-BASED CORRELATION MAPS

Example : β-band , seed in SM1.

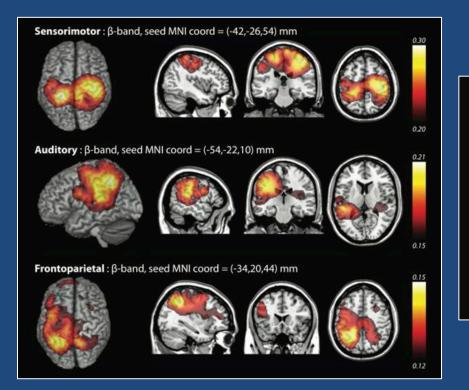


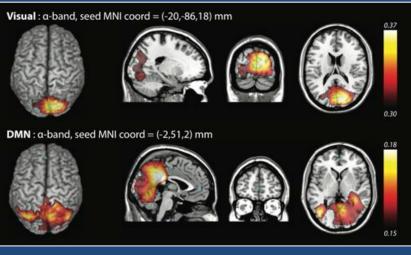
Envelope correlation map (max=1)

Signal correlation map (max=1)

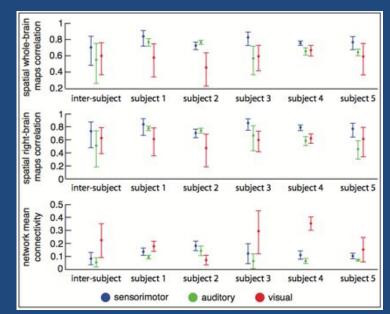
- Difficulty due to source spreading.
- Solution: linear regression with seed.

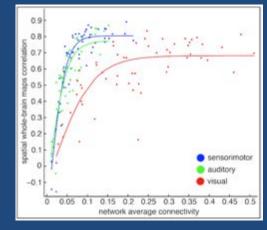
Signal correlation map (max=0.003)


Envelope correlation map (max=0.1)


SEED-BASED CORRELATION MAPS

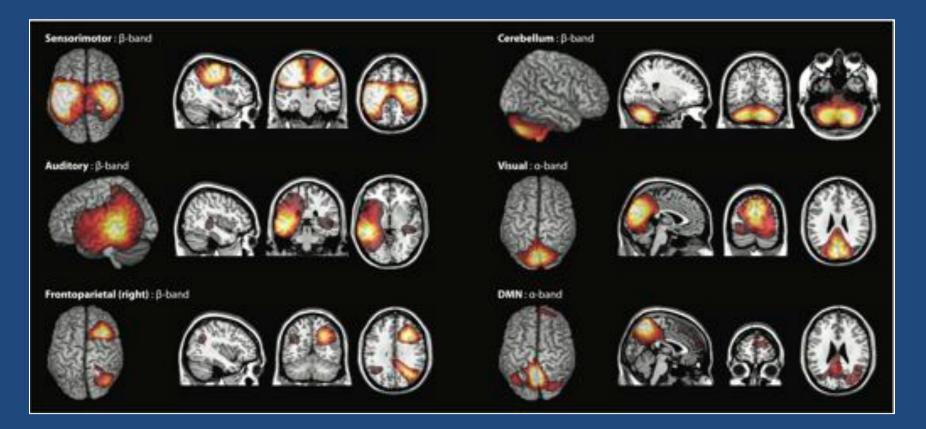
Results for well-known networks.


15 subjects Rest data, eyes open, 5 min



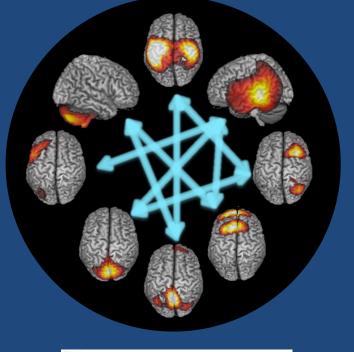
INTER- AND INTRA-SUBJECT VARIABILITY OF RSNS

- Reproducibility of single-subject RSNs and associated factors?
- RSN reliability :
- Individual connectivity spatial pattern correlates with :
 - Network connectivity level (p<10⁻⁴).
 - SM1_{β}: β/θ (p<10⁻³) and β/α (p<10⁻²) power.
 - A1_{β} : β/θ power (p<10⁻²).
 - $V1_{\alpha}$: α (p<10⁻²), α/θ (p<10⁻⁴), and α/β (p<10⁻⁴) power.



INDEPENDENT COMPONENT ANALYSIS

Another approach to extract co-variation patterns : temporal ICA.



LAST CONSIDERATIONS

THE DYNAMIC BRAIN NETWORK

- Existence of multiple RSNs : integrative picture of brain organization and activity.
- Brain as combination of uncoupled networks : obviously wrong!
- Cross-network interactions:
 - cross-frequency coupling,
 - transient synchronization.

A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain

tefania Della Penna,^{1,2} Abraham Z, Snyder,^{3,4} Laura Marzetti,^{1,2} Vittorio Pizzella,¹

Study of spectral and dynamic properties of functional connectivity : MEG rules !